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SCIENTIFIC RESEARCH ASSOCIATES, INC. 

FINAL REPORT: R93Ö026F 

CONTRACT DAAL03-90-C-0005 

TRANSPORT VIA MOMENTS OF QUANTUM DISTRIBUTION FUNCTIONS 

H. L. GRUBIN and T. R. GOVINDAN 

INTRODUCTION 

The development of crystal growth techniques has made it possible to fabricate devices with 
very small dimensions and sharp interfaces. Consequently, a variety of device concepts 
based upon small dimensions with sharp interfaces has emerged. These include such high 
speed devices as the HEMT, HBT, quantum resonant tunneling devices, quantum wire 
structures and quantum dots. The structure and operation of these devices is based upon a 
perceived physical picture, often based upon results of quantum transport theory. 

While all devices are governed and sometimes limited by quantum mechanical properties, 
many devices do not require quantum mechanics for an understanding of their basic 
operation, but do need quantum mechanics to provide key electrical properties. For 
example, heterostructure bipolar transistors sustain low levels of current at low bias levels; 
these currents are dominantly tunneling currents. Thermionic contributions to current 
occur at high bias levels. Until recently, the drift and diffusion equations as well as the 
moments of the Boltzmann transport equation did not include a description of tunneling 
currents in any way other than through ad hoc arguments. Tunneling requires quantum 
mechanical contributions. 

The recent advance in the description of transport in devices with quantum contributions is 
due to the discussion of Ancona and Iafrate (1989), who demonstrated that the quantum 
corrections to multi-particle transport, first discussed by Wigner (1932), could be 
incorporated in the drift and diffusion equations by adding to the classical potential a term 
proportional to a quantum mechanical based potential: 

(1) Q-O^mXO^Kp)* 

where the subscripts denote derivatives. Within the framework of the drift and diffusion 
equation the 'Q* term modifies the particle current as follows: 

(2) j(x,t)=n^kbT[(V+aQ)/kbT + in(n)]x 

The proportionality constant V was evaluated [Ancona and Iafrate (1989)] in the high 
temperature limit from the equation of motion of the Wigner function and was found to be 
equal to 1/3. The factor '1/3' is a serious issue, in that intuitively, as well as through 
arguments associated with the single particle Schrodinger equation, it would be anticipated 
that the constant V would be unity. 

The problem addressed in the last paragraph, namely the origin of the factor a=1/3, as well 
as the procedures under which quantum contributions to the balance equations are 
obtained formed the basis of the study under Contract DAAL03-90-C-0005. This was 
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complemented by numerical simulations, using 'characteristic' algorithms to examine the 
extent to which the quantum corrected results are relevant. 

The means by which the problem is addressed is through an expansion of the equation of 
motion of the Wigner function, and an expansion of the equation of motion of the density 
matrix. The discussion of the Wigner function is in the form of a review, in that a 
comprehensive treatment appears in Grubin and Kreskovsky (1989). The work on the 
density matrix is new. 

QUANTUM CORRECTED EQUATIONS OF MOTION FOR 
THE WIGNER FUNCTION AND THE DENSITY MATRIX 

The Wigner Equation of Motion: The analysis under this study was restricted to one space 
and one momentum direction and includes Fokker-Planck scattering. The equation of 
motion of the Wigner function with Fokker-Planck dissipation as discussed by Stroscio 
(1986) is: 

(3) ft + (p/m)fx+(l/i*Xl/2^^ 

=27[pf]p+Dfpp 

where: 

(4) Vfcx\t) = [V(x+x72,t)-V(x-x72,t)] 

The potential energy V(xpc',t) is referred to below as the Iiouville potential. As discussed 
bjr Frensley (1990) the first term of the Fokker-Planck dissipation corresponds to a 
frictional damping term, the second corresponds to thermal fluctuations. This will be 
discussed in more detail below. 

It is direct, but nontrivial to demonstrate that the integral in equation (3) reduces in the 
classical case to Vxfp; thus equation (3) reduces to the Boltzmann transport equation with 
Fokker-Planck dissipation: 

(5) ft+(P/m)fx-Vxfp=27[pf]p + Dfpp 

To second order in ft, the Wigner equation of motion, or equivalently, the quantum 
corrected Boltzmann equation is: 

(6) ft+(p/m)fx-Vxf^ 

The left hand side of equation (6) has been discussed in detail by Ancona and Iafrate 
(1989) and Grubin and Kreskovsky (1989). 

The Equation of Motion of the Density Matrix: This equation has been discussed in the 
context of quantum structures by Frensley (1990). While the equation of motion is a 
fundamental equation, it is equivalent to and can be obtained directly from the Wigner 
equation of motion. In the latter case multiply equation (3) by dp[exp[i2f p/ft]] ana 
integrate over p. For this integration p varies from -«to +«, and it is assumed that the 
Wigner function and all necessary derivatives with respect to momentum vanish as p=*±«>. 
Identifying the density matrix through the Weyl transformation: 

(7) p(x+C^-f) = [V(2^Ä)Urdpfw(p^)exp[2ipr/Ä] 

-2- 



the transformed equation becomes the density matrix in the coordinate representation: 

(8) Pt + (*/2mi)pxr(l/i*)[V(x + f ,t)-V(x r,t)]p+27fpf + [4Df 2/*2]p = 0 

An expansion of the Liouville potential about the point x yields: 

(9) pt + (Ä/2mi)pxr(l/iÄ)[2cVx+(fV3)Vxxx]p+27fPf + [4Df2M2]P=0 

which is the transformed equivalent of equation (6). 

Retaining only the terms that are linear in r yields the transformed equivalent to the 
classical Boltzmann equation. As will be seen the presence of the factor '1/3' in equation (9) 
is the key ingredient in obtaining the multiplicative factor in the quantum potential. It is 
emphasized that quantum corrections to 0(ft2) are contained in the term [(C3 /3)Vj^Jp. 

Equations (6) and (9) are the relevant equations for the analytical part of this study. 
Equations (3) and (8) are, however, the ones to deai with in a fundamental approach to 
quantum transport. Results with equation (8) are introduced later into the discussion. 

THE APPROXIMATE EQUILIBRIUM DISTRIBUTION FUNCTION 

In the absence of dissipation the approximate Wigner distribution function to second order 
in h is Wigner (1932): 

(10) fw = exp^[p2/2m + U(x)]{H>2^/4)[(Vxx^VxV3)^(p2/3m)Vxx]} 

Where \2 = ft 20/2m, and ß = l^k^T). The equivalent approximate density matrix solution 
to order 0(h 2) is: 

(11) p(x + f^-f)=Nexp-[C2A2+^V]{l-(X2^/6)(l + f2A2)Vxx + >V2Vx
2/12} 

where, 

(12) N = 2(m/27c/?Ä2)1/2. 

Note: First, the classical density matrix equivalent to the Boltzmann distribution is: 

(13) p(x + C^-0 = Nexp-[C2A2+/?V]; 

Second, the brackets {• • •} contains quantum corrections to the density matrix. Third, the 
approximate density matrix is real, indicating that the current is zero. Fourth, the diagonal 
components of the approximate density matrix, which are obtained for C =0, are equal to: 

(14) p(x^) «N[exp*V][l-(X 2^/6)(Vxx^Vx
2/2)] 

This result also emerges from an integration of the Wigner function over all values of 
momentum (Ancona and Iafrate (1989). 

The significance of equation (14) for device applications is that it describes the way in 
which quantum corrections alter the built-in potential. For example, when it is recalled that, 
classically, the potential and carrier density are related through the expression: 

(15) p=Nexp-0V 
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and therefore that ß Vx = -pjp; then through incorporation of the quantum potential 
(equation (1)), it is straightforward to show that Q = (h 2/4m)0[Vxx-0Vx

2/2], and that: 

(16) p=N[exp-£V][l-(/?Q/3)] 

Several points are clear: First there may be an alteration of the built-in potential arising 
from gradients in the carrier density; second, the factor of 3' that appears in equation (16) 
is seep to be 3 consequence of the truncation of the Taylor expansion of the potential in 
both the density matrix and Wigner equations. 

Quantum Corrected Energy Density Matrix: There is a characteristic energy associated with 
the equilibrium system obtained from both the Wigner function and the density matrix. To 
obtain it from the density matrix we define an energy density matrix through a Weyl-like 
transformation: 

(17) E(x + f ,x-r) = [1/(2** )]^;wdp(p2/2m)fw(p^)exp[2ipCM ] 

Note: for f = 0, the above reduces to mean kinetic energy of the system. It is direct to 
demonstrate that 

(18) E(x + f ,x-r ) = -(* 2/8m)pc c 

The expectation value of the energy is the diagonal component of the energy density matrix, 
and yields: 

(19) E(x,x) = [pkbT/2[[l-(X VeXAnp)^} 

= [kbT/2+wq]p 

the gradients of carrier density, as first predicted by Wigner (1932). 

THE APPROXIMATE NONEQUILIBRIUM DENSITY MATRIX 

Classical moment balance equations are often obtained through representing the 
nonequilibrium state by a displaced Maxwellian, exp-f^^pjj^m+V}] where, e.g., p^, 
the density and a particle temperature, are to be determined. The Weyl transformation 
indicates that a displaced Maxwellian yields a density matrix with the following 
modification: 

(20) p(x + f ,x-f y>p(x + C ,xf )exp-[2ipdr/*] 

Thus the classical density matrix corresponding to the displaced Maxwellian is (21) 
p(x + Cx-0 = Nexp-[C2A2 +0V + 2ipdC/*] 

Note that the density matrix contains an imaginary part, as required for a finite current. 
The nonequilibrium quantum-corrected density matrix is given by a modification of 
equation (11): 
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(22) Q (x + C ,x-C ) = Nexp-[f 2 A2 + ß V + 2ipdC /ft ] 

Quantum Corrected Current (velocity flux) Density Matrix: Since the density matrix 
contains imaginary components we are interested in the expectation values of the current 
flux density. To obtain this we define a current density matrix as: 

(23) j(x + f ,** ) = [ V(2ir* )Ur dp(p/m)f^p,x)exp[2ipr/ft ] 

Note: for f = 0, the above reduces to mean velocity flux of the system. It is direct to show 
that: 

(24) j(x + r^-0 = (*/(2mi))pf 

The expectation value of current is the diagonal component: 

(25) jXx^) = (Pd/mV 

The quantum corrections to the current are obtained from the quantum corrections to the 
density. Note that the form of the current density along the diagonal is the same for 
classical transport as it is for quantum corrected transport. Thus of relevance are the 
equations defining p<j, density and temperature. To establish these we reconsider the 
equation of motion of the density matrix taking successive derivatives. 

THE APPROXIMATE NONEQUHJBRIUM BALANCE EQUATIONS AS 
OBTAINED FROM THE EQUATION OF MOTION OF THE DENSITY MATRIX 

Particle Balance: The first balance equation is obtained by rewriting the equation of motion 
of the density matrix and then dealing only with the diagonal component. Thus there is 
reduced content. Using the definition of velocity flux, equation (9) becomes: 

(26) p(x + c^-C)]t + D(x + r^)]x-(ViÄ)[2cVx + r3VX)a/3]/>(x + r^-C) 

+27rb(x+c>x-r)]c+[4Df2M2]p(x+r^-r)=o 

The first balance equation is obtained from the diagonal component of equation (24): 

(27) [p]t + [/>Pd/m]x = 0 

which is the equation of continuity. 

Momentum Balance: To determine the next governing equation to second order in h we 
take derivatives of equation (2) with respect to *f \ multiply by ft/2i, and obtain: 

(28) [p(x + f^C)]t+2[E(x + f^f)]x + (l/2)[2Vx + C2Vxxx]p(x + C^C) 

-(1/i* )[2f Vx + f 3 Vxxx/3]p(x + c^-r) 

+27p(x+c^-r)-i[4Dr/Ä]p(x+c>x-r) 

-iÄ7c[p(x+r^f)Vf+[4Df2M2][p(x+c^r)]=o 
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where p(x + r ,x-C) = j(x + f ,x-£ )m. The diagonal component of energy under finite cuTent 
conditions is required for the second balance equation. It is: 

(29) Efrx) = [Pd2/2m + (kbT/2)(l-(X 2/6)(X np^Jp 

With the diagonal components of energy given by equation (29), identifying a relaxation 
time r =2/7, the second balance equation is obtained from the diagonal components of 
equation (29): 

(30) (pPd)t+(PPd2/m)x + (/'krOx+P(Q'3)x+pVx+pp/T =0 

where we recognize that [(JL np^p^ = -4mpQxM 2. The above equation differs from its 
classical analog through the presence of the quantum potential. The form of the scattering 
term in the above equation also confirms Frensley's (1990) statement of the first part of the 
Fokker-Planck scattering as a frictional term. 

Energy Balance: If we regard the quantum corrected density matrix as a distribution 
function with three undetermined parameters, the third being the temperature, then a third 
equation is needed to complete the system of equations. This third equation is obtained in 
a manner similar that of equation (28), namely by taking a second derivative of the density 
matrix equation of motion, with respect to C • We are only interested in the diagonal 
components of this equation, which with the energy given by equation (18), are: 

(31) Et + (l/(2m2)P»x+jVx=(Et)coll 

where P3 is the diagonal component of the third moment of the off-diagonal element: 

(32) [ V(2*ft )Uf dp(p3 )fw(p,x)exp[2ipr/*] = (*/2i) »Pf f f 

Using equation (21) for the density matrix, equation (32) becomes: 

(33) Et + tod/mME + O^XH* 2/6](inp)xx)]}x + (ppd/m)Ux+2E/T + 8Dp =0 

where the energy in equation (33) is given by equation (29) (Note: the equilibrium value of 
P3 is zero). The above equation can be rearranged to read: 

(34) Et + (pdE/m)x + (pdpkbT/m)x -:- (pPd/m)[Q/3+V]x 

-p(X 2kbT/6)[(jtn/>)xx](pd/m)x + 2E/r-8Dp =0 

If we assume equilibrium values for D, namely D = mkbT/T, equation (34) becomes: 

(35) Et + (pdE/m)x+(pdpkbT/m)x+(pPd/m)[Q/3 + V]x 

-p (> * kbT/6)[(l np WÖtfmk + (2/r )[E-kbT/2]p - 0 

And the second part of the Fokker-Planck dissipation involves a relaxation to a non-zero 
thermal energy. 

The equation of motion of the density matrix involves two NxN matrices (real and 
imaginary parts) where N represents the numbers of grid points along a linear dimension. 
The density matrix equation is the equation of interest. An approximate representation of 
the equation of motion of the density matrix is provided by the first three moments of the 
density matrix. These moments include the continuity equation, momentum balance, and 
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energy balance. 

As in all moment equation representations, the form of the moment equation depends upon 
the primary equation, in this case equation (9), and the generic form or the distribution 
function, in this case equation (22). The most dramatic consequence of the approach, as 
expressed in the momentum balance equations, is the appearance of the quantum potential. 
The quantum potential with its associated factor of '1/3 , the latter arising solely as a 
consequence of the expansion of the Liouville potential, permits a quantum mechanical 
"correction" description of classical transport and allows tunneling to be incorporated into 
the latter. This result was also the initial conclusion of Ancona and Iafrate (1990). 

It is important to reiterate that one key result of the present study is that through the 
expansion of Liouville potential in the equation of motion of the density matrix the 
quantum corrections are the same as those obtained from the equation of motion of the 
Wigner distribution function. The origin of the factor of '1/3' is due solely to the expansion 
of the Liouville potential, and is not limited the high temperature limit discussed by Ancona 
and Iafrate (1989). 

The energy balance equation is also driven by the quantum potential, but additionally there 
appears to be a contribution that may behave as a quantum correction to the pressure. This 
is the terms p(\2 k^T/6)[(X n/? J^]. 

In addition to the quantum mechanical contributions, the moment equations include an 
incorporation of Fokker-Planck dissipation in the moment formulation, and twenty of the 
relative contribution of each of the two terms. A more general treatment is provided by 
Stroscio (1986). 

The next question concerns the significance of the quantum potential. 

SELF CONSISTENT NUMERICAL SOLUTIONS 

This section contains a discussion of the interpretation of the distribution of charge within 
the quantum well and quantum barrier device and the values obtained thereof. The 
calculations involve solutions to the density matrix coupled to Poisson's equation: 

(36) old\[t (x)d V/ax] = -e2[p(x^)-P0(x>] 

Classical N-±-N-N-±- Structures: Since most resonant tunnel structures are designed with 
the heterostructures placed within the interior of a low doped region, the first 
self-consistent problem discussed involves transport through a classic N + N"N + structure. 
The structure is 1200A long with a nominal doping of 10* 8/cm3 and a centrally placed 
250A, 10l 6/cm3 region. The variation in background doping was over one grid point or 4Ä. 

There are a variety of questions to be addressed here; among them is the issue of whether 
there are any quantum contributions associated with an ostensibly classical structure. It is 
relevant, in this matter to recall one of the conclusions of a paper by Iafrate, Grubin and 
Ferry (1981), where it was argued that quantum corrections are important if the density 
sustained an approximate Gaussian distribution with a width at half maximum of 
approximately 80Ä of less. 

The equilibrium charge density and potential distribution as obtained from the complete 
equation of motion of the density matrix, equation (8) without dissipation, for the 
N + N~N + structure are shown in figures (la) and (lb), respectively. The results appear 
classical. We also show the diagonalcomponent of energy density of the system, figure (1c), 
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ar computed from equation (18) and the quantum potential, figure (Id), as computed from 
equation (1). For completeness we also snow the two dimensional plot of the density matrix 
in figure 2. 

Figures (la) and (lb) display charge density and self-consistent potential distributions that 
are ostensibly classical. There is an increase in potential across the N" region, which 
accompanies a decrease in charge density across this same region. From the point of view 
of quantum transport, we are also dealing with a tunneling problem, particularly with those 
carriers whose energy is below the potential barrier, which in this case has a height of 
approximately 45 mev. We note that the mean energy of the entering carriers is kDT/2 < 45 
mev. 

Quantum transport permits t anneling, thereby increasing the numbers of particles in the N~ 
region over the classical value. Continuity of the wavefunction and its denvative through 
the barrier region (at the metallurgical interface the energy density is approximately 
kuTp/2, and decreases into the N" region; prevents the density from approaching it's 
classical value, and instead assumes a smaller value. This result which is a consequence of 
wave function continuity has been refeTed to by others as quantum "repulsion" (Kluksdahl 
et al (1989)). The "increased" value ot density in the barrier region and "decreased" value of 
density in the classically accessible region are represented by equation (16) if the quantum 
is negative within the barrier region and positive within the region of the 'turning points' at 
the boundary of the metallurgical junction. The quantum potential as evaluated from 
equation (1) and depicted in figure Id displays these qualitative features. Note that the 
quantum potential at the center of the structure is approximately 25% of the energy at the 
boundaries. For a very wide N~ region the density at the center region of the structure will 
be relatively constant and Qs 0, at the center. 

For the calculation of figures 1 and 2, the density, potential and quantum potential are 
respectively 

(37) ?cal(v=r°) = 1-847x 1017^cm3 

(38a) VcaJ(x = 0) = 44.725 mev 

(38b) Qai\(x = 0) = -3.0228 mev 

Calculations p(x = 0) from equation (16) with the potential energy and quantum potential 
given by equation 38 yield 

(39> />Eq.(38)(x = °) = 1-832X101 Vcm3 

The energy density at the center of the structure as computed from the density matrix is 

(40) Ecaj(x = 0) = 2.3015 mev/cm3 

The energy as computed from equation (19) is 

(41) EEq.(19)(x = °) = 2-286 mev/cm3 

The hydrodynamic moment equations appear in the case of the simple N + N"N + to yield 
the same result as the density matrix for the charge distribution. 
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Double Barrier Diodes: The situation for double barrier diodes is quantitatively different 
than that of the N + N"N + structure. Here the quantum mechanics is not a correction to 
the classical solution. However, as in the N + N"N + structure, it is expected that outside of 
the double barrier that continuity of the wave function would again yield a density below 
that of the classical value. Thus the quantum potential would be positive in this region. 
Within the barrier quantum mechanical tunneling permits a greater number of carriers than 
those associated with tl "» classical distribution; thus the quantum potential is negative. 
Within the quantum well continuity of the wavefunction results in a charge distribution that 
is below that obtained classically; and Q is negative. The variation of density, potential, 
energy and quantum potential are displayed in figures 3 and 4. 

Figure 3a displays the density distribution which shows a small residual change in the 
quantum well and an insignificant amount of charge within the barriers. Potential energy is 
displayed in figure 3b, where we note that the low density in the quantum well region 
contributes to an elevation of the potential relative to the end points. The mean energy 
density is shown in figure 3c, and displays negligible values at tne center of the structure. 
The quantum potential is displayed in figure 3d. For the calculations of figure 3, the density 
potential energy and quantum potential are respectively 

(42) />cal(x = °) = 6.156x 101 6/cm3 

(43a) Vcal (x = 0) = 15.479 mev 

(43b) Ocai (x = 0) = 92.149 mev 

Calculating p(x = 0) from equation (16) within the potential energy and quantum potential 
given by equation <43) requires that the quantum ± Jtential be multiplied by a constant 
other than 1/3. For the present situation the constant is closer to 2/3. This difference is 
value is not surprising in light of the fact that within the quantum well the value of the 
quantum potential is not longer a correction. Indeed Q is approximately equal to the 
quasi-bound state energy. 

The value of p (x = 0) from equation 16, with Q/3 replaced by 2Q/3 is: 

(44) P(Eq.(38)(x = °) = 5-043 x 101 8/cm3 

We note that the density upstream of the emitter is satisfactorily represented by equation 
(16). It would appear that our results are consistent with the discussion of Ancona and 
Iafrate (1989) where the quantum potential appearing in the moment equations should be 

(45) Phenomenological quantum potential:  aQ(x) 

where a is a position dependent positive constant less than unity. 

The energy calculated from equation (18) with the center of the quantum well is 

(46) Ecal(x=s°) = 2.864 mev/cm3 

The energy calculated from equation (19) with Q/3 replaced by 2Q/3 is: 

(47) EEq.(19>(x = °) = 2-684 mev/cm3 

The low value is present, even though the quantum potential tends to push up the mean 
carrier energy, and arises from the reduced charge in the quantum well. 
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CONCLUSION 

This study represents the first comprehensive effort to assess through (1) numerical 
simulations of the equation of motion of the density matrix, and (2) approximate analytical 
procedures involving an expansion of the Liouville potential, the multiplicative constants 
associated with the quantum potential, as used in quantum hydrodynamic transport. It was 
found that when quantum effects are 'corrections' to classical calculations, as in N + N~N + 

structures the factor '1/3' is a satisfactory multiplicative constant When the quantum 
potential is no longer a correction, as in the case of double barrier diodes, the multiplicative 
constant is no longer 'constant* but is position dependent and less than unity. Additional 
work is required to narrow the range of variation of this constant before effectively 
incorporating the quantum potential in detailed quantum hydrodynamic simulations of 
ultrasmall devices. 
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